首页> 外文OA文献 >Fault Diagnosis in Industrial Systems Based on Blind Source Separation Techniques Using One Single Vibration Sensor
【2h】

Fault Diagnosis in Industrial Systems Based on Blind Source Separation Techniques Using One Single Vibration Sensor

机译:基于单个振动传感器的盲源分离技术的工业系统故障诊断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the field of structural health monitoring or machine condition monitoring, most vibration based methods reported in the literature require to measure responses at several locations on the structure. In machine condition monitoring, the number of available vibration sensors is often small and it is not unusual that only one single sensor is used to monitor a machine. The aim of this paper is to propose an extension of fault detection techniques that may be used when a reduced set of sensors or even one single sensor is available. Fault detection techniques considered here are based on output-only methods coming from the Blind Source Separation (BSS) family, namely Principal Component Analysis (PCA) and Second Order Blind Identification (SOBI). The advantages of PCA or SOBI rely on their rapidity of use and their reliability. Based on these methods, subspace identification may be performed by using the concept of block Hankel matrices which make possible the use of only one single measurement signal. Thus, the problem of fault detection in mechanical systems can be solved by using subspaces built from active principal components or modal vectors. It consists in comparing subspace features between the reference (undamaged) state and a current state. The angular coherence between subspaces is a good indicator of a dynamic change in the system due to the occurrence of faults or damages. The robustness of the methods is illustrated on industrial examples.
机译:在结构健康监测或机器状态监测领域,文献中报道的大多数基于振动的方法都需要测量结构上多个位置的响应。在机器状态监控中,可用的振动传感器的数量通常很少,通常仅使用一个传感器来监控机器。本文的目的是提出一种故障检测技术的扩展,当一组减少的传感器甚至一个传感器可用时,可以使用该技术。这里考虑的故障检测技术基于盲源分离(BSS)系列的仅输出方法,即主成分分析(PCA)和二阶盲识别(SOBI)。 PCA或SOBI的优势取决于它们的快速使用和可靠性。基于这些方法,可以通过使用块Hankel矩阵的概念来执行子空间识别,该块可以仅使用一个测量信号。因此,可以通过使用从活动主成分或模态矢量构建的子空间来解决机械系统中的故障检测问题。它包括比较参考(未损坏)状态和当前状态之间的子空间特征。子空间之间的角度相干性很好地指示了由于故障或损坏而引起的系统动态变化。该方法的鲁棒性在工业实例上得到了说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号